Science 12 May 2023 Vol 380 , Issue 6645 Editor’s summary Certain fluoropolymers have ferroelectric properties and attractive mech...

Science
12 May 2023
Vol 380, Issue 6645
Editor’s summary
Certain fluoropolymers have ferroelectric properties and attractive mechanical properties for a wide range of applications. Qian et al. review the history of these polymers and discuss recent progress, focusing on their potential use in electromechanical, electrocaloric, and dielectric applications. Fluoropolymers are relatively flexible, making these materials attractive for a wide range of applications, including wearable devices. Many challenges remain for improving the properties of these materials for commercial applications. —Brent Grocholski
Structured Abstract
BACKGROUND
Polymeric ferroelectrics are distinguished by their high pliability, easy fabrication into complicated shapes, mechanical robustness, and polar active nature. Ferroelectricity in polymers was discovered around the 1970s in poly(vinylidene fluoride), which has served as a platform for efficient cross-coupling between electrical, mechanical, and thermal energies. Such ferroelectric soft materials and their polar active derivatives undergo a change in electrical polarization in response to general forces (mechanical stresses or temperature changes) and vice versa, enabling a series of physical effects, including piezoelectric and electrostriction, electrocaloric and pyroelectric, and a variety of dielectric and ferroelectric effects. These multifunctional polymeric materials are suitable for many different applications in portable, miniaturized, and wearable electroactive devices applied at human–machine interfaces because of their easy processability into thin, light, tough, and pliable films and fibers.
ADVANCES
Polymer ferroelectrics have exhibited marked improvements in electromechanical coupling efficiency, electrostrictive strain, electrocaloric heat-pumping capability, and lifetime, which have substantially boosted the development of practical applications based on these polar soft materials owing to the facile application of defects in tuning and controlling the polarization processes at the monomeric, macromolecular, and morphological structure levels. For the first time, the piezoelectric and electromechanical coupling factors of fluorinated alkyne (FA)–modified relaxor ferroelectric tetrapolymers have surpassed those of lead zirconate titanate (PZT) piezoceramics, the presently most widely used piezoceramics in the world. Coupled with the progressive 4% electrostrictive strain under a low electrical field of 50 MV/m, this advancement represents a step forward in developing efficient wearable sensory and haptic devices and soft robots. Additionally, advances in ferroelectric-based electrocaloric polymers have led to large electrocaloric cooling of >7.5 K under ultralow electric fields without fatigue. These ferroelectric polymers can offer customized, energy-efficient solutions to curb the CO2 emissions of current commercial heat pumps, air conditioners (ACs), and refrigerators, which are responsible for 60% of building emissions. In addition, the most recently reported electroactive fabrics demonstrate versatile strategies for integrating these polymer ferroelectrics at human–machine interfaces in this envisioned low-carbon society.
OUTLOOK
Understanding and then tailor-making the structures and polarization responses of polymeric ferroelectrics to obtain respective functionalities are critical for the development of these polymeric systems. Given their rich underlying chemistry, FA-modified relaxor ferroelectric polymers are likely still in their infancy. Defect modifications on the molecular scale provide a plethora of methods to manipulate the polar structures and field-induced phase transitions on demand. Considering the vast pool of monomers and nanoscale extrinsic inclusions that can be selected, defect modification in polymer ferroelectrics remains largely unexplored and holds great possibility for contributing to green, smart, and meta lifestyles. Further identifying and understanding the various polarization mechanisms and processes for each functionality at multiple scales will be accomplished by utilizing the current advanced, in situ characterization and simulation tools at our disposal. For different cross-couplings and correlated applications, materials should be fine-tuned to exhibit their respective collection of optimized properties. Several mutual challenges should be addressed, including realizing low-field operation, a long lifetime, viable strategies for integration and mass production, and so on. Considering the commercially available processes for polymeric films, multilayer capacitors, fibers, and fabrics, these flexible ferroelectrics are expected to play a key role in haptic, sensory, and robotic applications in the metaverse, serve as a solid-state refrigerant for flat-panel and/or wearable ACs, and provide a broad range of localized, bodily sensations and tactile effects currently unavailable on the market.
Multiphysical cross-couplings and enabled applications offered by polymeric ferroelectrics.
Advances in ferroelectric polymers—from homopolymers to tetrapolymers—have promoted applications that harness the power of efficient electromechanical, electrothermal, and a variety of dielectric interactions. The synergy of these physical effects has stimulated the fast development of flexural active systems, wearable refrigeration, flexible memories, and high-efficiency and compact energy storage over the past four decades. VDF, vinylidene fluoride; TrFE, trifluoroethylene; CFE, chlorofluoroethylene.
Abstract
Ferroelectric materials are currently some of the most widely applied material systems and are constantly generating improved functions with higher efficiencies. Advancements in poly(vinylidene fluoride) (PVDF)–based polymer ferroelectrics provide flexural, coupling-efficient, and multifunctional material platforms for applications that demand portable, lightweight, wearable, and durable features. We highlight the recent advances in fluoropolymer ferroelectrics, their energetic cross-coupling effects, and emerging technologies, including wearable, highly efficient electromechanical actuators and sensors, electrocaloric refrigeration, and dielectric devices. These developments reveal that the molecular and nanostructure manipulations of the polarization-field interactions, through facile defect biasing, could introduce enhancements in the physical effects that would enable the realization of multisensory and multifunctional wearables for the emerging immersive virtual world and smart systems for a sustainable future.
Get full access to this article
View all available purchase options and get full access to this article.
References and Notes
1
K. Uchino, Ferroelectric Devices (CRC Press, ed. 2, 2018).
2
M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).
3
H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys.8, 975 (1969).
4
G. T. Davis, J. E. McKinney, M. G. Broadhurst, S. C. Roth, Electric-field-induced phase changes in poly(vinylidene fluoride). J. Appl. Phys.49, 4998–5002 (1978).
5
R. G. Kepler, R. A. Anderson, Ferroelectricity in polyvinylidene fluoride. J. Appl. Phys.49, 1232–1235 (1978).
6
T. Furukawa, M. Date, E. Fukada, Y. Tajitsu, A. Chiba, Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Jpn. J. Appl. Phys.19, L109–L112 (1980).
7
T. Yagi, M. Tatemoto, J.-i. Sako, Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers. Polym. J.12, 209–223 (1980).
8
A. J. Lovinger, Ferroelectric polymers. Science220, 1115–1121 (1983).
9
H. S. Nalwa, Ed., Ferroelectric Polymers: Chemistry, Physics, and Applications (CRC Press, 1995).
10
L. E. Cross, Relaxor ferroelectrics. Ferroelectrics76, 241–267 (1987).
11
Q. M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science280, 2101–2104 (1998).
12
F. Xia, Z. Y. Cheng, H. S. Xu, H. F. Li, Q. M. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdul-Sadek, K. Belfield, High electromechanical responses in a poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer. Adv. Mater.14, 1574–1577 (2002).
13
R. Newnham, V. Sundar, R. Yimnirun, J. Su, Q. Zhang, Electrostriction: Nonlinear electromechanical coupling in solid dielectrics. J. Phys. Chem. B101, 10141–10150 (1997).
14
B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science321, 821–823 (2008).
15
X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X. Qian, Q. M. Zhang, Pyroelectric and electrocaloric materials. J. Mater. Chem. C1, 23–37 (2013).
16
F. S. Foster, K. A. Harasiewicz, M. D. Sherar, A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control47, 1363–1371 (2000).
17
Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, R. S. Fearing, R. J. Full, L. Lin, Insect-scale fast moving and ultrarobust soft robot. Sci. Robot.4, eaax1594 (2019).
18
W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo, W. Zhang, Y. Li, Q. Zhang, H. Wang, All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun.10, 5541 (2019).
19
Y. Chen, J. Qian, J. Yu, M. Guo, Q. Zhang, J. Jiang, Z. Shen, L.-Q. Chen, Y. Shen, An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Adv. Mater.32, e1907927 (2020).
20
W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev, J. Marion, G. Rui, J. Lin, J. Cherston, A. Sahasrabudhe, J. Wilbert, I. Wicaksono, R. W. Hoyt, A. Missakian, L. Zhu, C. Ma, J. Joannopoulos, Y. Fink, Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature603, 616–623 (2022).
21
PolyK Technologies, LLC, Regenerative face mask with long shelf life and long service time for effective coronavirus filtration, Dept. of Health and Human Services, Centers for Disease Control and Prevention, SBIR Phase I, R43OH012416 (2022); https://www.sbir.gov/node/2344785.
22
X. Qian, D. Han, L. Zheng, J. Chen, M. Tyagi, Q. Li, F. Du, S. Zheng, X. Huang, S. Zhang, J. Shi, H. Huang, X. Shi, J. Chen, H. Qin, J. Bernholc, X. Chen, L.-Q. Chen, L. Hong, Q. M. Zhang, High-entropy polymer produces a giant electrocaloric effect at low fields. Nature600, 664–669 (2021).
23
R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh, Y. S. Ju, Q. Pei, Highly efficient electrocaloric cooling with electrostatic actuation. Science357, 1130–1134 (2017).
24
Y. Meng, Z. Zhang, H. Wu, R. Wu, J. Wu, H. Wang, Q. Pei, A cascade electrocaloric cooling device for large temperature lift. Nat. Energy5, 996–1002 (2020).
25
Q. V. Duong, V. P. Nguyen, F. Domingues Dos Santos, S. T. Choi, Localized fretting-vibrotactile sensations for large-area displays. ACS Appl. Mater. Interfaces11, 33292–33301 (2019).
26
T. T. Le, E. J. Curry, T. Vinikoor, R. Das, Y. Liu, D. Sheets, K. T. Tran, C. J. Hawxhurst, J. F. Stevens, J. N. Hancock, O. R. Bilal, L. M. Shor, T. D. Nguyen, Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long-term biodegradability. Adv. Funct. Mater.32, 2113040 (2022).
27
X. Chen, H. Qin, X. Qian, W. Zhu, B. Li, B. Zhang, W. Lu, R. Li, S. Zhang, L. Zhu, F. Domingues Dos Santos, J. Bernholc, Q. M. Zhang, Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375, 1418–1422 (2022).
28
“IEEE standard on piezoelectricity: ANSI/IEEE Std 176-1987” in Piezoelectricity, C. Zwick Rosen, B. V. Hiremath, R. Newham, Eds. (American Institute of Physics, 1992), pp. 227–228.
29
Z. Y. Cheng, Q. M. Zhang, Field-activated electroactive polymers. MRS Bull.33, 183–187 (2008).
30
G. J. Velders, D. W. Fahey, J. S. Daniel, M. McFarland, S. O. Andersen, The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. U.S.A.106, 10949–10954 (2009).
31
P. Hawken, Ed., Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming (Penguin, 2017).
32
J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu, Z. Zhong, J. Chen, Q. Zhang, X. Qian, Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule3, 1200–1225 (2019).
33
P. Kobeco, I. Kurtchatov, Dielectric properties of Rochelle salt crystal. Z. Phys.66, 192–205 (1930).
34
G. G. Wiseman, J. K. Kuebler, Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev.131, 2023–2027 (1963).
35
Y. V. Sinyavsky, N. Pashkov, Y. Gorovoy, G. Lugansky, L. Shebanov, The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics90, 213–217 (1989).
36
Y. V. Sinyavsky, V. M. Brodyansky, Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics131, 321–325 (1992).
37
X. Moya, S. Kar-Narayan, N. D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater.13, 439–450 (2014).
38
S.-G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, X. Li, E. Furman, L. Gorny, M. Lin, B. Malic, M. Kosec, R. Blinc, R. Pirc, Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett.97, 162904 (2010).
39
X. Li, X. Qian, S. Lu, J. Cheng, Z. Fang, Q. M. Zhang, Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett.99, 052907 (2011).
40
F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, K. Hemker, Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys.89, 1336–1348 (2001).
41
X. Chen, H. Qin, W. Zhu, B. Zhang, W. Lu, J. Bernholc, Q. Zhang, Giant electrostriction enabled by defect-induced critical phenomena in relaxor ferroelectric polymers. Macromolecules56, 690–696 (2023).
42
S. Anwar, D. Pinkal, W. Zajaczkowski, P. von Tiedemann, H. Sharifi Dehsari, M. Kumar, T. Lenz, U. Kemmer-Jonas, W. Pisula, M. Wagner, R. Graf, H. Frey, K. Asadi, Solution-processed transparent ferroelectric nylon thin films. Sci. Adv.5, eaav3489 (2019).
43
Q. Li, Q. Wang, Ferroelectric polymers and their energy-related applications. Macromol. Chem. Phys.217, 1228–1244 (2016).
44
A. J. Lovinger, D. D. Davis, R. E. Cais, J. M. Kometani, The role of molecular defects on the structure and phase transitions of poly (vinylidene fluoride). Polymer28, 617–626 (1987).
45
G. Rui, Y. Huang, X. Chen, R. Li, D. Wang, T. Miyoshi, L. Zhu, Giant spontaneous polarization for enhanced ferroelectric properties of biaxially oriented poly (vinylidene fluoride) by mobile oriented amorphous fractions. J. Mater. Chem. C9, 894–907 (2021).
46
A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. Yudin, A. Zlatkin, Two-dimensional ferroelectric films. Nature391, 874–877 (1998).
47
M. Guo, C. Guo, J. Han, S. Chen, S. He, T. Tang, Q. Li, J. Strzalka, J. Ma, D. Yi, K. Wang, B. Xu, P. Gao, H. Huang, L.-Q. Chen, S. Zhang, Y.-H. Lin, C.-W. Nan, Y. Shen, Toroidal polar topology in strained ferroelectric polymer. Science371, 1050–1056 (2021).
48
Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu, J. Bernholc, Q. Wang, Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature562, 96–100 (2018).
49
V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, A. L. Kholkin, Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Model.19, 3591–3602 (2013).
50
S. G. Lu, Q. M. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater.21, 1983–1987 (2009).
51
X. Li, X.-S. Qian, H. Gu, X. Chen, S. G. Lu, M. Lin, F. Bateman, Q. M. Zhang, Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett.101, 132903 (2012).
52
T. C. Chung, A. Petchsuk, Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules35, 7678–7684 (2002).
53
H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q. M. Zhang, G. Kavarnos, Ferroelectric and electromechanical properties of poly (vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett.78, 2360–2362 (2001).
54
J. Shi, Q. Li, T. Gao, D. Han, Y. Li, J. Chen, X. Qian, Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. Int. J. Refrig.121, 279–288 (2021).
55
X. Moya, N. D. Mathur, Caloric materials for cooling and heating. Science370, 797–803 (2020).
56
H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S. C. Yao, Q. M. Zhang, A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett.102, 122904 (2013).
57
J. Qian, J. Jiang, Y. Shen, Enhanced electrocaloric strength in P (VDF-TrFE-CFE) by decreasing the crystalline size. J. Materiomics5, 357–362 (2019).
58
G. Zhang, B. Fan, P. Zhao, Z. Hu, Y. Liu, F. Liu, S. Jiang, S. Zhang, H. Li, Q. Wang, Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl. Energy Mater.1, 1344–1354 (2018).
59
J. Qian, R. Peng, Z. Shen, J. Jiang, F. Xue, T. Yang, L. Chen, Y. Shen, Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: In situ characterization and phase-field simulation. Adv. Mater.31, e1801949 (2019).
60
Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han, W. Lu, J. Bernholc, Q. Wang, Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater.19, 1169–1174 (2020).
61
S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, R. Radermacher, I. Takeuchi, Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance. Int. J. Refrig.62, 177–192 (2015).
62
A. Torelló, P. Lheritier, T. Usui, Y. Nouchokgwe, M. Gérard, O. Bouton, S. Hirose, E. Defay, Giant temperature span in electrocaloric regenerator. Science370, 125–129 (2020).
63
B. Nair, T. Usui, S. Crossley, S. Kurdi, G. G. Guzmán-Verri, X. Moya, S. Hirose, N. D. Mathur, Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature575, 468–472 (2019).
64
D. H. Kim, H. S. Park, M. S. Kim, The effect of the refrigerant charge amount on single and cascade cycle heat pump systems. Int. J. Refrig.40, 254–268 (2014).
65
F. Le Goupil, K. Kallitsis, S. Tencé-Girault, N. Pouriamanesh, C. Brochon, E. Cloutet, T. Soulestin, F. Domingue Dos Santos, N. Stingelin, G. Hadziioannou, Enhanced electrocaloric response of vinylidene fluoride–based polymers via one-step molecular engineering. Adv. Funct. Mater.31, 2007043 (2021).
66
S. T. Choi, J. O. Kwon, F. Bauer, Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens. Actuators A Phys.203, 282–290 (2013).
67
E. Häsler, L. Stein, G. Harbauer, Implantable physiological power supply with PVDF film. Ferroelectrics60, 277–282 (1984).
68
J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, “Parasitic power harvesting in shoes,” in Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), Pittsburgh, PA, 19 and 20 October 1998 (IEEE, 1998), pp. 132–139.
69
A. Ranjan, C. Peng, S. Wagle, F. Melandsø, A. Habib, High-frequency acoustic imaging using adhesive-free polymer transducer. Polymers13, 1462 (2021).
70
C. Yang, S. Song, F. Chen, N. Chen, Fabrication of PVDF/BaTiO3/CNT piezoelectric energy harvesters with bionic balsa wood structures through 3D printing and supercritical carbon dioxide foaming. ACS Appl. Mater. Interfaces13, 41723–41734 (2021).
71
S. Panda, S. Hajra, H. Jeong, B. K. Panigrahi, P. Pakawanit, D. Dubal, S. Hong, H. J. Kim, Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting. Nano Energy102, 107682 (2022).
72
Y. Wang, T. Guo, Z. Tian, K. Bibi, Y. Z. Zhang, H. N. Alshareef, MXenes for energy harvesting. Adv. Mater.34, e2108560 (2022).
73
F. Jiang, X. Zhou, J. Lv, J. Chen, J. Chen, H. Kongcharoen, Y. Zhang, P. S. Lee, Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater.34, e2200042 (2022).
74
H. Hatcher, Energy-harvesting clothes. Nat. Rev. Mater.7, 256 (2022).
75
N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy80, 105567 (2021).
76
J. Fu, Y. Hou, X. Gao, M. Zheng, M. Zhu, Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy52, 391–401 (2018).
77
Y. M. Yousry, K. Yao, A. M. Mohamed, W. H. Liew, S. Chen, S. Ramakrishna, Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv. Funct. Mater.30, 1910592 (2020).
78
F. Mokhtari, G. M. Spinks, C. Fay, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol.5, 1900900 (2020).
79
H. Gao, P. T. Minh, H. Wang, S. Minko, J. Locklin, T. Nguyen, S. Sharma, High-performance flexible yarn for wearable piezoelectric nanogenerators. Smart Mater. Struct.27, 095018 (2018).
80
K. Castkova, J. Kastyl, D. Sobola, J. Petrus, E. Stastna, D. Riha, P. Tofel, Structure–properties relationship of electrospun PVDF fibers. Nanomaterials10, 1221 (2020).
81
L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J. A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun.4, 1633 (2013).
82
K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy52, 153–162 (2018).
83
C. Peng, M. Chen, H. Wang, J. Shen, X. Jiang, P(VDF-TrFE) thin-film-based transducer for under-display ultrasonic fingerprint sensing applications. IEEE Sens. J.20, 11221–11228 (2020).
84
S. Biswas, Y. Visell, Haptic perception, mechanics, and material technologies for virtual reality. Adv. Funct. Mater.31, 2008186 (2021).
85
M. Innocenti, W. Bruno, S. Merighi, V. Parkula, F. Jeanneau, “The science of touch in electronics haptics, it used to be all about resonant frequency,” Passive Components Networking Symposium, Milan, Italy, 7 to 10 September 2021.
86
H. Gu, X.-S. Qian, H.-J. Ye, Q. M. Zhang, An electrocaloric refrigerator without external regenerator. Appl. Phys. Lett.105, 162905 (2014).
87
H. Gu, B. Craven, X. Qian, X. Li, A. Cheng, Q. M. Zhang, Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Appl. Phys. Lett.102, 112901 (2013).
88
Y. Wang, Z. Zhang, T. Usui, M. Benedict, S. Hirose, J. Lee, J. Kalb, D. Schwartz, A high-performance solid-state electrocaloric cooling system. Science370, 129–133 (2020).
89
T. Zhang, X.-S. Qian, H. Gu, Y. Hou, Q. Zhang, An electrocaloric refrigerator with direct solid to solid regeneration. Appl. Phys. Lett.110, 243503 (2017).
90
H. Hou, S. Qian, I. Takeuchi, Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater.7, 633–652 (2022).
92
D. Guo, J. Gao, Y.-J. Yu, S. Santhanam, A. Slippey, G. K. Fedder, A. J. McGaughey, S.-C. Yao, Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int. J. Heat Mass Transf.72, 559–564 (2014).
93
U. Plaznik, A. Kitanovski, B. Rožič, B. Malič, H. Uršič, S. Drnovšek, J. Cilenšek, M. Vrabelj, A. Poredoš, Z. Kutnjak, Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett. 106, 043903 (2015).
94
H. Cui, Q. Zhang, Y. Bo, P. Bai, M. Wang, C. Zhang, X. Qian, R. Ma, Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule6, 258–268 (2022).
95
Y. Bo, Q. Zhang, H. Cui, M. Wang, C. Zhang, W. He, X. Fan, Y. Lv, X. Fu, J. Liang, Y. Huang, R. Ma, Y. Chen, Electrostatic actuating double-unit electrocaloric cooling device with high efficiency. Adv. Energy Mater.11, 2003771 (2021).
96
W. Ji, B. Cao, Y. Geng, Y. Zhu, B. Lin, Study on human skin temperature and thermal evaluation in step change conditions: From non-neutrality to neutrality. Energy Build.156, 29–39 (2017).
97
K. L. Kim, W. Lee, S. K. Hwang, S. H. Joo, S. M. Cho, G. Song, S. H. Cho, B. Jeong, I. Hwang, J.-H. Ahn, Y.-J. Yu, T. J. Shin, S. K. Kwak, S. J. Kang, C. Park, Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory. Nano Lett.16, 334–340 (2016).
98
R. H. Kim, H. J. Kim, I. Bae, S. K. Hwang, D. B. Velusamy, S. M. Cho, K. Takaishi, T. Muto, D. Hashizume, M. Uchiyama, P. André, F. Mathevet, B. Heinrich, T. Aoyama, D.-E. Kim, H. Lee, J.-C. Ribierre, C. Park, Non-volatile organic memory with sub-millimetre bending radius. Nat. Commun.5, 3583 (2014).
99
M. Xu, X. Zhang, S. Li, T. Xu, W. Xie, W. Wang, Gate-controlled multi-bit nonvolatile ferroelectric organic transistor memory on paper substrates. J. Mater. Chem. C7, 13477–13485 (2019).
100
R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater.4, 243–248 (2005).
101
B. B. Tian, J. L. Wang, S. Fusil, Y. Liu, X. L. Zhao, S. Sun, H. Shen, T. Lin, J. L. Sun, C. G. Duan, M. Bibes, A. Barthélémy, B. Dkhil, V. Garcia, X. J. Meng, J. H. Chu, Tunnel electroresistance through organic ferroelectrics. Nat. Commun.7, 11502 (2016).
102
H. Li, R. Wang, S.-T. Han, Y. Zhou, Ferroelectric polymers for non-volatile memory devices: A review. Polym. Int.69, 533–544 (2020).
103
M. Kang, S. A. Lee, S. Jang, S. Hwang, S.-K. Lee, S. Bae, J.-M. Hong, S. H. Lee, K.-U. Jeong, J. A. Lim, T.-W. Kim, Low-voltage organic transistor memory fiber with a nanograined organic ferroelectric film. ACS Appl. Mater. Interfaces11, 22575–22582 (2019).
104
Y. Chen, M. Xu, X. Hu, Y. Yue, X. Zhang, Q. Shen, High-resolution structural mapping and single-domain switching kinetics in 2D-confined ferroelectric nanodots for low-power FeRAM. Nanoscale 12, 11997–12006 (2020).
105
Z. Hu, M. Tian, B. Nysten, A. M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater.8, 62–67 (2009).
106
S. Hwang, K. Kim, S. Cho, T. Park, B. Jeong, I. Bae, C. Park, Multi-level operation of three-dimensionally stacked non-volatile ferroelectric polymer memory with high-performance hole-injection layer. Org. Electron.75, 105394 (2019).
107
S. K. Hwang, S. M. Cho, K. L. Kim, C. Park, 3D-stacked vertical channel nonvolatile polymer memory. Adv. Electron. Mater.1, 1400042 (2015).
108
M. Carroli, A. G. Dixon, M. Herder, E. Pavlica, S. Hecht, G. Bratina, E. Orgiu, P. Samorì, Multiresponsive non-volatile memories based on optically switchable ferroelectric organic field-effect transistors. Adv. Mater.33, e2007965 (2021).
109
S. He, M. Guo, Y. Wang, Y. Liang, Y. Shen, An optical/ferroelectric multiplexing multidimensional non‐volatile memory from ferroelectric polymer. Adv. Mater.34, 2202181 (2022).
110
Z. Yin, B. Tian, Q. Zhu, C. Duan, Characterization and application of PVDF and its copolymer Films prepared by spin-coating and Langmuir–Blodgett method. Polymers11, 2033 (2019).
111
S. Majumdar, B. Chen, Q. H. Qin, H. S. Majumdar, S. van Dijken, Electrode dependence of tunneling electroresistance and switching stability in organic ferroelectric P(VDF-TrFE)-based tunnel junctions. Adv. Funct. Mater.28, 1703273 (2018).
112
B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q. M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).
113
N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J. Wu, H. Yan, M. J. Reece, E. Bilotti, Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun.10, 4535 (2019).
114
J. P. DiMarco, Implantable cardioverter-defibrillators. N. Engl. J. Med.349, 1836–1847 (2003).
115
X. Ren, N. Meng, L. Ventura, S. Goutianos, E. Barbieri, H. Zhang, H. Yan, M. J. Reece, E. Bilotti, Ultra-high energy density integrated polymer dielectric capacitors. J. Mater. Chem. A10, 10171–10180 (2022).
116
E. Baer, L. Zhu, 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules50, 2239–2256 (2017).
117
T. Ju, X. Chen, D. Langhe, M. Ponting, E. Baer, L. Zhu, Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Mater.45, 494–503 (2022).
118
H. Li, T. Yang, Y. Zhou, D. Ai, B. Yao, Y. Liu, L. Li, L.-Q. Chen, Q. Wang, Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater.31, 2006739 (2021).
119
G. Zhang, Q. Li, E. Allahyarov, Y. Li, L. Zhu, Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl. Mater. Interfaces13, 37939–37960 (2021).
120
Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc, L. Q. Chen, J. Runt, Q. M. Zhang, Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale9, 10992–10997 (2017).
121
T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang, J. Runt, Q. M. Zhang, A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv.6, eaax6622 (2020).
122
L. Li, J. Cheng, Y. Cheng, T. Han, Y. Liu, Y. Zhou, G. Zhao, Y. Zhao, C. Xiong, L. Dong, Q. Wang, Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater.33, e2102392 (2021).
123
C.-W. Nan, M. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys.103, 031101 (2008).
124
K. Zou, C. Shao, P. Bai, C. Zhang, Y. Yang, R. Guo, H. Huang, W. Luo, R. Ma, Y. Cao, A. Sun, G. Zhang, S. Jiang, Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano Lett.22, 6560–6566 (2022).
125
M.-D. Li, X.-Q. Shen, X. Chen, J.-M. Gan, F. Wang, J. Li, X.-L. Wang, Q.-D. Shen, Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13, 5849 (2022).
126
G. Qian, K. Zhu, X. Li, K. Yan, J. Wang, J. Liu, W. Huang, The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature. J. Mater. Sci. Mater. Electron.32, 12001–12016 (2021).
127
Z. Wang, Y. Gao, Y. Ma, X. Xie, M. Yang, H. Zhang, Enhanced electrocaloric effect within a broad temperature range in lead-free polymer composite films by blending the rare-earth doped BaTiO3 nanopowders. Adv. Compos. Hybrid Mater.4, 469–477 (2021).
128
P. Bai, Q. Zhang, H. Cui, Y. Bo, D. Zhang, W. He, Y. Chen, R. Ma, An active pixel-matrix electrocaloric device for targeted and differential thermal management. Adv. Mater.35, e2209181 (2023).
Information & Authors
Information
Published In
Science
Volume 380 | Issue 6645
12 May 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Article versions
Submission history
Received: 1 December 2022
Accepted: 5 April 2023
Published in print: 12 May 2023
Permissions
Request permissions for this article.
Acknowledgments
Funding: Q.M.Z. and X.C. acknowledge support from the US Office of Naval Research under award N00014-19-1-2028. X.Q. thanks the National Natural Science Foundation of China (grant 52076127), the Natural Science Foundation of Shanghai (grants 20ZR1471700 and 22JC1401800), and the State Key Laboratory of Mechanical System and Vibration (grant MSVZD202211). L.Z. acknowledges financial support from the US National Science Foundation (grant DMR-2103196).
Competing interests: Q.M.Z. and X.C. have filed a PCT patent application (PCT/US2022/032214) at Penn State on EM tetrapolymers and related EM devices. X.Q. has filed a patent application (WO/2022/257747) on tetrapolymers and ECE. L.Z. has no competing interests.
Authors
Affiliations
State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Centre, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Roles: Conceptualization, Data curation, Funding acquisition, Investigation, Project administration, Resources, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Materials Research Institute and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Conceptualization, Formal analysis, Methodology, Software, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Roles: Conceptualization, Funding acquisition, Project administration, Supervision, Visualization, Writing – original draft, and Writing – review & editing.
Materials Research Institute and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA.
Roles: Conceptualization, Funding acquisition, Project administration, Supervision, Visualization, Writing – original draft, and Writing – review & editing.
Funding Information
US National Science Foundation: DMR-2103196
Notes
†
These authors contributed equally to this work.
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Cite as
Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion.Science380,eadg0902(2023).DOI:10.1126/science.adg0902
Export citation
Select the format you want to export the citation of this publication.
View Options
Check Access
Media
Figures
Multimedia
Tables
COMMENTS